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1. Introduction

%The analysis of steady plane deflagration waves invariably starts with the

combustion approximation where it is assumed that the Mach number, i.e. the flame

speed divided by a characteristic sound speed, is vanishingly small. The momentum

equation then implies that the pressure is nearly constant while the thermal

and mechanical descriptions of the wave decouple, so that the task of solving

for the structure is greatly simplified. Even then explicit formulas can only

be obtained in the limit of large activation energy.

We are currently interested in describing, by means of activation-energy

asymptotics as far as possible, the transition from deflagration to detonation

in gases., One of the first steps in such a theory is to analyze deflagration

waves whose Mach numbers are not vanishingly small. Pressure variations cannot

be neglected and hence the momentum equation must be retained in the descrip-

tion of the structure. We will show, in the present paper, that the method of

activation-energy asymptotics gives an analytic description of these fast

deflagrations, i.e. deflagrations travelling at speeds greater than those justi-

fying the use of the combustion approximation. In addition we examine the limit

of vanishingly small Mach number to shed light on the nature of the combustion

approximation.

The main t is that the Mach number of a fast deflagration wave is

determined (implicitly) by the flame temperature, a parameter of the mixture.

But an interesting feature is a secondary reaction over an exponentially long

tail in which the small amount of reactant escaping the initial flame is finally

consumed. In addition, for small Mach numbers we find a hydrodynamic adjustment

layer behind the flame and another possible wave neither of which can be detected by

the combustion approximation9 In short, we have extended the classical work

of Bush and Fendell (1970) to finite Mach numbers, and uncovered the existence

of very slow deflagration waves.

JI..
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2. The governing equations

The governing equations of a plane, steady deflagration express the balances

of mass, momentum, energy and species. In deriving the equations used here cer-

tain assumptions are made, the most important being: steadiness~one-step reac-

tion, Arrhenius kinetics, ideal gas, Newtonian fluid, Fick's diffusion lawequal

specific heats and constant material properties. See Buckmaster & Ludford (1981).

In what follows p,v,T and Y are respectively the dimensionless density,

gas velocity, temperature and mass fraction of the deficient reactant (if there

is more than one). The density and temperature in the quiescent conditions

upstream are taken as units so that the dependent variables p,v,T,Y tend to

1,O,1,Y_. as s 4--, where s denotes distance from the flame. The

distance unit is the preheat thickness A/c M, where A and c are respectively
p p

the thermal conductivity and specific heat of the fluid; and M is the mass flux,

the velocity unit being the flame speed. The other important parameters that

appear are defined in Table 1.

The Prandlt and Lewis numbers will both be set equal to one, solely to

simplify our discussion. Prandlt and Lewis numbers different from unity a'Te

discussed in Appendix I.

The equations of steady plane combustion can then be shown to reduce to

Ya~dV/ds = YW(V-l) + (Tvl-1), (1)

dT/ds = d2T/ds2 + cAYeG/T, (2)

T (Y-I)MY/2, (3)

T+ Y - 1 + B (Y-i)M2 /2 with B" aY.., (4)

Pv- 1Wi t V-v + . (5)
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The perfect-gas law serves to define the pressure, which has been eliminated.

In the present formulation, V and T will be the basic variables, the

temperature T and mass fraction Y serving as auxiliary variables defined by

(3) and (4) respectively. Thus equations (1) and (2) are to be solved under

the conditions that V,T * 1,1+(Y-1) /2 as s * -, and that the solution

is bounded as s +o. Equation (5) just defines the density. The singular

nature of equation (1) as M -1 0 leads to the adjustment layer mentioned
0

in the Introduction (cf. Sees. 5 and 6).

3. Activation-energy asymptotics

We seek a solution of equations (1)-(4) in the distinguished limit

D Ce2 exp(8/T*) with e -P . (6)

KHere the constants C and T. are supposed given; their determination

for an actual mixture is considered in Sec. 8. The connection between the

wave speed and the mass flux M is made explicit by writing

M (M%

(m is the so-called acoustic impedance). Thus the reaction term in

equation (2) appears as

AYe - ' / T - Ce yexp[e (1/T .- l/T /m2M 0 (8)

As 8 , there are three possible regimes. In regions where T < T*,

the reaction term is exponentially small and hence negligible compared to

algebraic perturbations; the chemistry is frozen. In regions where T > Tw,



the reaction term is unbounded unless Y is zero to all order in e ;

equilibrium prevails. Finally, the regions in which T - Te - 0(e" ) are

flame sheets, found to be characterized by a reaction/diffusion balance.

Equilibrium regions will in fact only occur in the limit of the combustion

approximation.

4. Fast deflagration waves

We now determine the structure of fast deflagration waves. The flame sheet

is located at s - 0 and on either side the chemistry is frozen, as we shall

see. Expanding the variables in the form

u au + e-lu1  (9)

and assuming Y is zero to leading order in the burnt region shows that

To  + Oe8 + (y-I)i4/2, Y = Y (l-es) for a < 0 (10)

and

°  1 + 0 + (Y-1)W0/2, Y a 0 for s > 0. (1)

The solution fof V requires some discussion. On both sides of the0

flame sheet V is governed by (1) where V and T are taken to leading

order and To is defined in terms of V0  and To by (3). For a > 0 the

fixed points of equation (1) are

- (CM+) A _(lM2)2 - 2(y~l)WO]f(Y+1)M ~ (12)

which shows that the restriction

_2 > (13)

must be placed on M% for a given heat release P • Equality corresponds

to the Chapman-Jouget deflagration, so that the present theory will yield Mech

numbers in the range



0 < M2 El M2 [ (y~e.) 0-/i8+10 _] (14i)

Integrating (i) for s > 0 shows that
V

2y 1 Iv0-v+I +
7+-l (V+-V) i-ns + c (15)Vo-VI-

where c is a constant. Since V+ - V is positive, V as s . +-,

which is appropriate for weak deflagrations.

For s <0, we cannot integrate equation (1) analytically without further
S

assumption because T contains e . Nevertheless its integration with V - 1

for s = -e determines the value V0 = V.( O ) < V at s - 0. Determination

follows from the saddle-point nature of the cold-boundary point in the T,V-plane;

the inequality results from dV /ds ?O for s > 0, not a simple result to verify.
0

As a consequence T decreases from its value T. at the flame because T is0 0

constant.)

Since V* is determined by the integration for s <0, the constant c

in (15) is fixed and

T T o) 1 + + ' (1-l)Mo(l-V)/2. (16)

00

"bus the flame temperature is determined as a function of the

flame speed, i.e. 1o. If T* is a monotonically decreasing function of

which is usually found to be the case for reasonable values of $,y,Pr, then

there is a unique M2 for the given T. in the definition (6) of D. A typical

plot of le vs. T. is shown in Fig. la.

Note that no discussion of higher-order terms or structure of the flame

sheet is necessary to determine the flame speed. Only the minimal assumption

of continuity across the flame sheet is made. The analysis is distinctly different

from that for M small (using the combustion approximatio, where a discussion

of the structure (and hence higher-order terms) is needed to determine Mo .

1 -~
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On either aide of the flame sheet the perturbations of T and Y are

=T-e for s < 0, T + for s < 0 and Y1 in"Tl/o; (17)

while V1  satisfies

01 dV./ds =V 1.(M2 -T/V 2 ) + TfV0  for all s 0 0. (18)

The integration constants T+ are determined by the flame-sheet structure, as

we shall see next. Note that T is not zero: an O(e - ) amount of reactant

escapes burning and passes downstream where, over exponentially large distances,

it is finally consumed. The process is described in Appendix II.

To investigate the structure, let

z u s (19)

and consider the expansions

- l B+(y-l)Mo/2 + 'ljl(z)+...,v- v, + e-lilC+..., Y e-lil(z)+... (20)

T-=T 0 48 -TI(z) ... .
-1

Then we easily find

Vl " 8 + v(°) with 8- v, - 1 + (,Ve-) o ,  (21)

where V1 (0) is at this stage an unidentified constant. However, it follows

by matching that V1  in the outer expansions is continuous across the flame

sheet, so that V1 (0) is in fact the common value there (hence the notation).

The solution of equation (18) is determined, once T are found, by the upstream

condition VI(--) = 0. Clearly the upstream solution, and hence the constant

V1 (0) in (21), depends on -r while the downstream solution depends on both

T and T-.
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The T -problem now becomes

d2 1 /dz A e wit h _1 1 0 *[dz+ J1 0
.4 and A C/m21, (22)

Oi=  Z + T_ + 0(l) as Z T-, + + 0(1) as Z +

where the boundary conditions are obtained by matching. A transformation

reduces (22) to a structure problem discussed by Li'nan [1974]. Let

2 ( l)2V.6/0,

* = -TI/T*, w = (Y-1)

~.(23)
2, V(O/ 2 + 1vt{2 I4

Oz/T* 0V1 O/T * (1wtx{ 2AT*};

then

2 d2
2d o/dt =qexp-a-w;.

T + Vl(O)/8 2 + (1/w)U{B /2RT., + oft) as CI (24)

C= -T+ /T* + o(l) as C-).

Liian found (numerically) that, whenever w is less than 1/2, a

j solution of the equation (24a) is uniquely determined by the weaker boundary

conditions

do/dC -**-l as 4 -i-aao, df/dC - 0 as C - +m. (25)

By adjusting the (finite) starting point for the left boundary condition

he was able to satisfy the right boundary condition, and thereby approximate

the parameters

0(w) = lim (&), a+(w) lima. (26)

I ". ... -.... .... . ...'+ ;
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For 0 < w < 1/2, as is the case here, a, was found to be positive while

C_ - 1.344, a + - 0 as w O. [Proof that w is less than 1/2 has been given

by Lu & Ludford (1981).] It follows that for our problem

-T_-/T +V(0)0B/62 + w$Pni .- /2 . a_, -- ifT a+ (2T)

are thereLdetermined.

To complete the determination of T+ we must calculate Y() in

terms of T_, which requires the equation (18) for V in s < 0 to be
1

integrated under the condition VI(-a) = 0. The solution is

Ts with n(s) e '(f-f(s)) as' (28)
o, YM2V s

v. = .,_,,( ,wih .,,) ., _.xCc ,? (s,')'

s

where f(s) = 1 (M2-T/V2)ds';

0

and hence

V1 (0) = %0(0). (29)

We now have asymptotic approximations to order 8-1 in the three

regions, for any set of parameter values C,T,,m,By,Y_ . To summarizej

these approximations are determined as follows. First T0 , and hence

Y 0 is determined by solving the reactionless equation (2) on either

side of the flame sheet assuming continuity across the sheet and Y - 00

for s > 0. The solution is given by equations (10) and (11). V is
0

then determined by integrating equations (1) to leading order, numerically

for s < 0 and analytically [equation (15)] for s > 0. The temperature

follows from Jquatioj (3), depending in particular on M. Setting0
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*, To(0) u T. then fixes the flame speed (represented by Mo ) as a function
0 0

of the | ve temperature T., according to equation (16). Fig. 2a is

the result of carrying out these steps for one particular set of parameters.

The approximation to the next higher order is obtained by solving

for V, and -I  in the outer regions (s c 0), see equations (17)
1

and (28), and determining the corresponding constants T+,VI(0) through

the relations (27) and (29). These relations are obtained from the structure

of the flame sheet and explicit integration of the equation for V1  in

s < 0, respectively.

Explicit analytical results can be obtained when the heat release

is small, in which case all variables stay close to their values upstream.

Note that this limit can be taken for any value of M0 , i.e.it is quite

independent of the combustion approximation M * 0.
0

5. Small heat release: B << 1

The smallness of the heat release may be due either to a small heat of

reaction or to a small amount of reactant. It enables analytical expressions

Ito be developed for the results in Sec. 4 that otherwise have to be derived
by numerical integration.

We write

V =1+ v + To - 1 + (y-l)Mo/2 +BT' (30)
00

so that

2
Y 0 (l-T')j ...4T 0 - 1 + BT'-(Y-l)m0 V' +... . (31)

Then f e
s  for s < 0,

(32)

Il for s >0
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and

(33) YMdV'/ds "-(l'Mo)V' + T'. (33)

The solution which vanishes at s - -m and is continuous at s 0 is

[l+(Y-1)M]-lea for s < 0,V1 0=11.2 /M (34)

[l-M]-1(-YM[1+(-1)M]0l for s >O0.

Note that when M is small a rapid hydrodynamic adjustment takes place

behind the flame sheet, given by the exponential term in(34 b). The combustion

approximation takes the thickness of this Mach layer [which is a consequence

of the singular nature of the differential equation (33) as M * 0] to be zero.

Consider the distinguished limit

2-T*= 1 + Bt*, C - B C with B -P 0. (35)

For t. in an appropriate interval, T. is attainable, i.e. it lies

between the upstream temperature and the adiabatic flame temperature; and

, obtained from equation (27 a), remains bounded as B 0. As

explained in Sec. 4, in order to determine the wave speed, we calculate

the temperature at s = 0 and set it equal to T,. Here the relation

between T0  and M2 becomes explicit, namely

t* = /[l+(y-)M 2 ] (36)

In particular, as T* approaches the adiabatic flame temperature T, i.e.

t* - 1, the flame speed vanishes, i.e. M2 - 0. The restriction (13) on

the heat release is not violated unless M2 becomes close to *M 1 /2

thus t. varies between 1 and l/Y < 1.
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To complete the analysis we calculate the 0"1 perturbations explicitly.

Details are omitted; suffice it to say that, to leading order in 0, we find

6 B/Yw = ((Y-i)/Y]M,4 as) = [ll(l+(-l)N2)]e s  (37)I?
so that

Vl(o) = T/[l+(Y_-l)Mo, (38)

where, from equation (27 a),

i+(Y-l)M2  m2

0 [ o (39)

(Y.L )(I-M2) (Y-l)M2 2C0 0

In short, the solution to O(e-), both inside and outside the flame sheet,

is explicitly determined once C and t* are specified. The flame speed is

determined by t. alone, while e only enters at the perturbation. This

means that changing C affects the structure of the flame(corresponding to

a slight translation)and hence the perturbation it produces upstream and

downstream, but not its velocity.

6. The Combustion Approximation

The limit M -* 0 must be examined carefully. But, before doing so, we
0

shall review the basic results of activation-energy asymptotics in the

combustion approximation.
The combustion approximation is the limit M o 0 with e fixed. The

0

activation-energy limit 6 * - is then used to analyze the resulting

equations. Thus lim lim is obtained in contrast to lim lim which will
M- M-,0 M 40 0-M*S0 0

be obtained from the above analysis. The pre-exponential factor C in the

Iamkohler number is assumed to be such that A - C/m is O(1).
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To all orders in 0" , equations (1-5) with M4 a 0 are correct

to leading order in a 14?-expansion. We find immediately0

T - "V, T + aY = 1 + o a T (4o)
a

to all orders in 8"1 and the leading order result

1 + Oeg for s < O,

T0 = (4l)
1 + 0 for s > 0.

Standard flame-sheet analysis yields the structure problem

(22) which, with TI, T* replaced by TI,Ta and M0 0 0, becomes

T /T
2

d2T /dz2 .AT1e with X =€/ 0
o (42)

T1 BZ + T_ + 0(l) as Z.-., T* + o(l) as z

Clearly, v+ is zero; otherwise the differential equation is not consistent

with the boundary condition at z a +w. A first integral

T /T
2

2 4 2 1(d 1 /dz) -2TSA(1+(' 1 /T-_1)e a1 (43)

is obtained by using the requirement T+ = 0. The boundary condition

at z a -m will then"be sactisfiect only it

2 4 D 2  2 2 OfTa 4
A.B/2T , i.e. D - - B0ee /2T. ()

A further integration using the same condition yields

2 2

Bz - * =  j {(l-(t'l)et]l/2 "l)dt + TI (4)
g-a



' -13-

Thus, while the constant t+ is zero, . is undetermined; its definition

corresponds to locating an origin for the flame structure to 0(0"). For

the structure to exist, A must have the value (44), corresponding to a

definite distinguished limit for D as M * 0.
0

Returning to the fast deflagration with 0 * w we now let M 0 0.o

First note from the discussion in Sec. 4 that M *0 as T 5 - T: the limit

of vanishingly small flames speeds corresponds to f l me temperatures T5
indefinitely close to the adiabatic flame temperature Ta•

a

The only point at which there is difficulty ia the limit is the unbounded

term

-1 2 14(16w I n{8 /2AT* (46)

in the formula (27). If, however, we set

A 2 4 BmM2T* (17
/2T., i.e. C o/2T* (47)

corresponding to

2 2M2 o e 2, e
D m 0 (T*)eexp (ef/T*)f2T5  (148)

the term disappears and no difficulty remains. We have therefore constructed

a family of asymptotic solutions, parametrized by T., which is uniformly

valid in the interval

Teq 7 ,( T._ T (49)

Moreover, the member T* 0 Ta of this family is one of the solutions obtained

by the combustion approximation.

4 1..-,



Other uniformly valid families can be obtained by taking

= (2/2T)[l+M2(TO)f(T*)] with f arbitrary. This would add a factor

1 + Mo(T*)f(T) to the right-hand side of (48) and change T by an amount

depending on T.. Because of the exponential in the formula (48), any two such

families produce the same finite D for values of T0 within O( "1 ) of

each other. The corresponding members are therefore identical except for ._,

a change which corresponds to translation of the wave by an 0(e 1 ) amount.

The two members corresponding to To = Ta  differ in the same manner,

reflecting the indeterminancy noted above for solutions under the combustion

approximation.

When Ta is excluded from the T.-interval a much larger class of uniformly

valid families of solutions, all identical under translations, can be obtained

by taking A to be an arbitrary function of T., again because of the exponential

in D. Any such family which is not of the earlier type breaks down as

T -+ Ta because the term (46) becomes unbounded in the limit, suggesting

that there are other solutions when M is small, characterized by

perturbations that are large compared to 
1 .

We turn now to these solutions of our general equations, finally

demonstrating that they do not survive the combustion approximation. It

is therefore not surprising that they have escaped detection before.

7. Very Slow Deflagrations

We now consider the distinguished limit

D = Ce 2exp(e/T.), T* a Ta - g(O)t* with e .+ a, (50)

where g{8) is a positive guage function large compared to 0"1 and t*

is 0(l). We anticipate M2 kg(e), with k - O(1) positive, and look0n lo



-15-

for expansions of the form

uu 0  g(e)us + e"1  (51)

upstream and downstream of the flame. Thus the leading-order terms are given

by formulas (10) and (11) with M2 = 0 and V - T - oThe g-perturbations
0 0 0

are then found by assuming continuity of T and T (but not V ) from
9 g 9

one side to the other, assumptions that can be justified by considering the

structure of the sheet. Thus

- (y-l)k/2 + Er -(y-l)k/2]e s , V (y-l)kV/2 for s < 0

(52)

Tr " , V = -(-l)kT 2 /2 + kyBT for s > 0,
g so g gon a a

where T is an as yet undetermined constant. As expected from the discussion

in Sec. 5, V is discontinuous across the flame sheet so that a Mach layer is
9

required. We easily find the modification

V T - (y-l)kT2/2+ YkT [1-exp(-s/ykTeg)] for s > 0, (53)

which makes the necessary adjustment on a scale s - O(g), much larger than

that of the flame sheet. The e--perturbations are found to be

T V 1  e for s 0; t1 V-YnT+ for s> 0, (54)

where T ± have to be determined.

To fix the constants .r g' z we must discuss the structure of the flame

sheet, where as usual the coordinate z - s/ is appropriate. The equations

for the g-perturbations require their constancy through the flame sheet, so

that the expansions there are written

Ii
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V "I T l ...e_ Ta + ~i e-1;I *

aTa - , v ,T = +go, 1 " (55)

in terms of which

Sg* - (Y-l)kT2 /2, -ai * - (Y-i)k/2 (56)

according to the relations (3) and (1).

We first show that g must be zero. Assuming Y y 0 and following
g0eg

the steps leading to the structure problem (22) shows that a balanced equation

for can only be obtained if

T 2 tne/(t. )e. (57)

The corresponding structure problem is

2. 2 1 a
d Ae with A mi - 0 C/58

dildz +o(i) as z -, d;ldz o(1) as z -.

Clearly the boundary condition at z .-m can only be satisfied if A - 0.

Thus the assumption ? g oE 0 is incorrect and we must have

, "~ -, " . (Y-1)k/2, " - " t(<o,
Y o . igo£

where t 2 T -)(y-l)/2.

Balancing the ;-equation with Y * 0 leads to a different condition

on g, namely

2 2 214
(C/ kg)ezp{eg(t- kt)/T1a} /2T, (6o)



the T 1-structure being precisely that of the combustion approximation.

Now we choose g to be the solution of

e - g (61)

thereby obtaining a positive guage function soley dependent on w vith the

property 1 :> g(e) >>e- . Then equation (60) becomes

(C/r 2 k)exp(e9g(t.-k)/T2 + 1]} a 2/2 4 (62)

from which 0 disappears if

k - (t,+T2)/i, i.e. -(t, + Ta)g/i. (63)

This determines M2 as a (linear) function of t..

We are therefore considering a family of solutions for which

a B2 M2 (t +T2) 2 2 2 (t5:T ) epF 8 . (
c = 0 a i.e. D = exp (64)4. T L-t.'g'  "

2% t 2T4 Lta a

The family is parameterized by t, which, since Wo is positive, cannot
20

be less than t= -Ta2 so that the present theory is uniformly valid in

the interval

2
-Ta < t _ to < -for any t*o. (65)

2,
Elimination of t* and neglect of a term O(eg ) in the exponential yields

B2m
2

D 2 2 M2 exp[e/(T-M 2,t)] (66)
*1 ~2T' oaa

Other uniformly valid families can be obtained by taking

- e g -g (67)



which multiplies D by a factor a . Because of the exponential, any

two such families produce the same D for values of to within 0(0"l 9 " )

of each other, so corresponding members are identical.

The wave speeds exhibited by (63) are vanishingly small in the limit

-4 , i.e. much smaller than those corresponding to tho combustion

approximation (which was shown in Sec. 6 to make correct predictior for 1o

small but finite as 0 * -.) Thus the solutions in this section are very

slow deflagrations.

Now we shall demonstrate that the existence of these other solutions

cannot be detected by the combustion approximation, whose equations were

mentioned at the beginning of Sec. 6. With the distinguished limit and

the expansions of the present section, it can be shown that the flame-sheet

perturbation T must again be zero and that the structure problem isge

(42) with

i (C/m 2 kg)exp(egt,/ . (68)

As usual, A is found to be equal to 2 /2Ta , and that result together with

(61) leads to the analog of (62), i.e.

2

a

where the choice (61) is again made for g.

To eliminate 0 we must set

to .(To)

thereby losing te as a parameter, and then
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14 m2 c
c, (B/2T )k (71)

so that the solutions are now parameterized by k - M/g directly. The

corresponding D is (66) with t - 0 which may be rewritten

D - 2 e,x(e/T ) (72)
2T 4a
a

on neglect of a term O(eg ) in the exponential. But this formula is the

same as (44); we have merely reproduced the results of Sec. 6, which hold
for small M° up to 0(i) on the e-scale, in the limit M2 . O(g).

Note that the only difference between formulas (66) and (72) ist'he jpreselce

of the term U2, which results from the momentum equation neglected in the0

combustion approximation.

8. Application of these results for large e

The mathematical analysis provides an asymptotic solution when the

Damkohler number has the form (6) with C and T. specified. In practice,

however, D and e (large but finite) are given istead of C and To,

which must now be calculated from the formulas (47) and (48). Sec. 4 can then

be expected to give an approximate solution, provided 6 is large. The

calculation of T. is illustrated in Fig. 3, which graphs D as a function

of T. in a typical case. Note that D cannot exceed a certain value

corresponding to T. - T*Cj (if a steady solution is to exist). As e *'

this upper bound increases indefinitely, so that for very large e effectively

any value of D leads to a steady deflagration. As D becomes small,

T* - T aa athe solution obtained through the combustion approximation is

recovered.
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The procedure is particularly transparent when the heat release is

small. Then, according to formula (36),

Mo(T,) ,, Ta(-T)
(M. -l -.) (T3)

and the restriction that 0 < c requires that

*CCJTeCJ = 1. I C/ To <T a  (734)

Thus

S, 2  Ta-T*
D (-1) T5  l e exp(e/T.) (T5)

which clearly leads to a curve of the form shown in Fig. 3, the maximum

value of D being

expt(1~+0/y)). (6
2(+y) 476)

The results in Sec. 7 show that there is another possibility for

each value of D. The calculation of t. from the equation (64b) for

large e (g having been determined from equation (61))is illustrated in Fig. 5.

The formulas of Sec. 6 can then be expected to provide an approximate solution.

Note that the second solution exists whatever the value of D, the wave

speed(on the scale of gl/2) increasing monotonically from 0 to es as

D does so.

Thus we have shown that, for a given D in an appropriate range, there

are in fact two distinct wave speeds, one for fast deflagrations as predicted

by (48) and illustrated for small heat release by equations (73) and (75),

and one corresponding to very slow deflagrations as predicted by equation (66).
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In the D/m2 ,Mo-plane both branches tend to the single curve (44) obtained

by the combustion approximation, as 2 4 0. A typical plot of D/m2

versus M is shown in Fig. 5.

The existence of two wave speeds has been known for some time,

albeit in association with heat loss under the combustion approximation.

Indeed Spalding and Yamlu (1959) have reported experiments, involving

heat loss, in which two wave speeds were found. More recently, Buckmaster

(1976) described the slower of the two waves in the limit of vanishingly

small heat loss. (The faster wave tends to the familiar deflagration wave

with T* a T, described in Sec. 6 for e * c.) However, a description of

the very slow waves under adiabatic conditions has apparently not been given

before.

IEE 7

*1
TI

!I

1.



- 22 -

Appendix I: Pr, Le 1

The assumptions of Prandtl and Lewis numbers equal to one were made for sim-

plicity and are not essential. Here we give the changes that are required when

we relax those assumptions.

The governing equations for general Pr, Le become

YM2 2yM0 PrdV/ds - yM 0 (V-i) + TV-' - I (77)

dT/ds + (y-l)TV-i'dV/ds yd2T/ds (78)

2 2 -efT+ Pry(y-l)M (dV/ds) + ayYAe
0

dY/ds = Le- d2Y/ds 2 - AYe O/T (79)

Equations (77) - (79) and equation (5) under the assumptions listed in Sec. 2

are the original equations that equations (1) - (4) were derived from. By suit-

able combination of equation (TT) and (T8) one can show that T as defined by

(3) satisfies

dd 2t 2 d 2 /)
ds-- -- + (Pr-l)(y-l)M 2 + aAYe-  (80)
ds ds2  ds2

and from (80) and (79) H = T + cY satisfies

H 1 + + + T (H-T)(Le--1) + (Pr-1)(y-)M V2} " (81)

0y.)/ ds 0(-)L1  +2

The simplification given by the dual assumption that Pr - Le - 1 is now obvi-

ous, equations (80) and (81) reducing to (2) and (4) respectively. Assuming the

Prandtl and Lewis numbers to be unity surely leads to great simplification which

motivated the form of our original discussion, but generally the variables T

:ind Ii offer no advantage over the original variables T and Y which we now

wil II use in the following.

L r
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Reactionless equations for the 0(1) terms and 0(6- ) perturbations are

to be subject to appropriate conditions at s = - and a set of jump conditions,

denoted by

[ul - u+ - u_ , (82)

derivable from a flame-sheet analysis. The leading order conditions are

[To = [Vo] = Yo = [dVo/ds] - (dTo/ds + aLe- dY/ds] =0
0 0 0 0 0 0 (83)

To = T* at s = 0 and Y 0 0 for s > 0}

2
The solution of the leading-order problem for a given value of M2  determines the

0
function T, = T,(M ) as in Sec. 4.

Similarily we find conditions on the 0(6- ) perturbations to be

[VI] = [TI + aLe- y'=O

[dVl/ds] = [TI]/YM2PrV*, [dTl/ds + aLe dY /ds] =(I/-Le)[T

The structure problem in the flame sheet corresponding to (22), now written in

terms of T becomes
11

22

=z - A&Y 1 e T 1+ae Y 1 (dT /ds )z +T 1+ +C~

T -* (dT /ds_)z + T1 _ as z - , T1 -1. (dT /ds+)z + TI+ as

Z -*+ Co.

And as before (85) can be transformed into Lina'n's problem (24) to be solved un-

der conditions (26) with w specified as
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w WT 0 ( /ds4 )/(dT /ds--dT 0Ids4- ) ;(dT Ids--dT/ds - ) 8 .(86)

Solution of Liiign's problem then fixes the constants Y1 ,9 Y 1+ (analogous to

T+T in Sec. 4),as

with Q =~[ /e T 2 +a2 41

= + 1/k~T n(a /2ALeT*)1

The general problem as outlined is numerical; but the limit of small heat re-

lease yields explicit formulas, as it does in Sec. 5. To all orders in 0 the

solution for Y is given as
0

Y 0=Y ,(l-ee 5 )for s<0 Y o 0 for s:- . (88)

Equations (77) and (7), with the reaction term set equal to zero are to be solved

subject to the required jump conditions. Expanding V and T 0as

V 0 1 + By' .... ,. To- 1 + OT' .. ,(89)

then v' and T' satisfy

2 2
dv'/ds =fYMO _1)v' + T']/PrIM 0

(90)

d2T'/ds2 , j(y-l)dv'/ds + dT IS/cJ/

subject to

vt ' -0 a sbounded as s (91)

[v'] = T'1 0 , dT'/dsl -1
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For 0< M < 1 we easily find

~2

I A , - 2 e for s 

1 (110

- 1 + 1 ( - ) e 2 f rs .,o

T, 2 [ +(A)

(X-I  lo) ( ,'II MlPM

1hi 1 a r 2d ae the poerte s

0 02 1

X1 9 x (-Pr)/yPrM 0 A2 /-y.m(-K 2)+yr) + s H2-O)rm}P 0 193

o i

x s Iformul2 ae thetperies:adtecmuto edt edn re o

arbitrary ~ ~ ~~~~-/y 2auso Pr adL whnheas M2 es ssal.Sneh

Setting T (0) equal to T of the definition (35) now shows that
0

(y-1) 2  (95)

ng thevalue v (A 2- /(1-Ho2) Onte terhn tetepraueinrassu

which reduces to the formula (36) for Pr 1. As there t -o 1, i.e. T*- Ta
2

tempeatur andveloity ro hen r thereatoreulaeisvsll. Sincne frA1 hs

Thes asmua detemin to and the combustion field to leading order for

is pfoir e nd X ine .4 However the result (92) shows that the

a monotonically up to the flame and beyond, ultimately attain-

Ing...................... =M......On the other hand the temperature increases up

2 2
tthflmbuthndcessto its fnlvueT'(-) w (1-yM )/(-M ). The

temperature and velocity profiles are therefore qualitatively unchanged from those

for Pr -1. See Fig.2a,b In Sec.4. However the pressure field, determined by the

perturbation
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p - v' (96)

is sensitive to the value of the Prandlt number. The pressure p' is zero as

s -w and reaches a negative final value p'(-) - -yM/(l-M2). In between, it
0 0

may or may not have a (positive) maximum depending on whether T'(0) is greater

or less than v'(0). For Pr - 1, they are equal so that the effect can be ex-

plicitly exhibited by taking Pr close to one. Thus we evaluate

'(0) 2 - 2 (1-Xl) (OT)
(1-M ) X- 1 ) (Yxl-1)

for

(Pr-1)(y-l)M
2  (l-M (

X and X2 0 (98)
S1 2 2  2yM; + 1 yM

00 0M

to obtain

y2(Pr-l)

P() YM 2+l-M 2(9

For Pr > 1 there is a pressure spike at the flame, whereas for Pr < 1 the de-

crease is monotonic with s from -- to +-. Presumably there is a similar

effect when the heat release is not small.

The discussion for very slow deflagrations found in Sec. 7 can also be gen-

eralized for Pr, Le 0 1. Again the starting point is equations (77)-(79).

2
Considering the distinguished limit given by (50) and allowing M2 = kg(e), the0

analysis Pr, Le 0 I follows precisely as in Section 7 in that we must consider

outer regions s < 0, s > 0 and a velocity adjustment in the O(g) Mach layer

bhind the flame sheet. The detailed solution to O(g) is more complicated than

that presented in See.7.involving terms that vanish when Pr - 1, but is obtained

in a straightforward fashion.
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Consideration of the flame structure requires as before that -0 and

fthus equation (60) again holds with the right-hand side replaced with

2 4 (100)a /2T Lea

Following the remaining arguments in Sec. 7 we find the only change is the form

of D parameterized by t*, which becomes

m22  2
D am6(*T)exp(T 6 1I

H2T 4Le T (-101)e
a
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Appendix II: The Exponential Tail

It was shown in Sec. 4 that for any non-zero Mach number, the combustion field

is comprised of a frozen region upstream and a flame sheet followed by a frozen

downstream region where the temperature descreases from T,. Thus reactant es-

2
capes from the flame in an amount measured by the perturbation q+ - -T+/T, =

S/2
Y+ /T > 0. (Note that the partial burning exhibited here holds for all non-zero

wave speeds, since Linfn's problem controls the structure. In the limit

M2 - 0, as in Sec. 7 Y+ - 0.) Because of this non-zero reactant fraction there0

mu~st be further burning beyond, albeit exponentially weak, so as to take the

reaction to completion.

Consider the expansions

V V + l/eV I + '', T T + l/e l +...; T - T®+ /eTl +... (l (ea.)

where V =V , T 1+ + (y-l)M2/2 , T - + + (y-l)M(l-V)1

and the variable

-ie 8/T (103)
q=Ae s .

-e/T
Since T. < T*, and A has the form implied by (8), Ae is exponentially

small compared to 6- . Hence the derivative in equation (1) is negligible to

all orders in -  and we find from (1), (3) and (4) that .I
2 2 2 l4V T (V /T-yMV) o T 1 -T (y-1)MVV , T -aY (10I)

Eliminating V and T in favor of T now shows that

A.

Ii

*1
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dr1  Ix~T T -Y 1
7-- -rlx~a, With 0 - 0

1 1T2 T-__2.
cc 0-V (105)

2
T,=_*+ at iiO

is the problem for T I j v ni 0. (The boundary condition is obtained by mat-

ching with the burnt region Immediately following the flame.)

An explicit solution can be given in terms of the exponential integral function

E ( -~ E1(mol+) n r for a 0

Ti usG+e~ for at-0 , (o6

E (OLT)- E I(-aa+)- for a 0

(Thee i nosi1lS$J . ivt (tor) since T -;, is positive for0

as is easily shown.)
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TABLE 1

y Ratio of specific heats

0M Mach number of flame with respect
to undisturbed speed of sound

Pr Prandlt number

Le Lewis number

a Nondimensional heat of reaction

O Activation energy

D Damkohler number

A 
-- 2



Captions:

Fig. la. M2 versus T. for Pr = 1, Le- 1,Y 5/3. 0 .5, Ta - 1.5

vhere oo .225ooCJT

Fig lb. M 02versus t. for Pr - 1, Le - 1, y 5/3. Dashed line for

6. .09 where ? " .51. Solid line is the asymptotic result (34).

Fig. 2&. Leading-order profiles of velocity, temperature, pressure and

mass fraction for Pr = 1, Le a 1,y a 5/3,0 - .5, 12 a .2 corresponding

to T. = 1.4 3.

Fig. 2b. Pressure profiles for general Le, Y a 5/3, M2 a .5 and various

Pr, showing a spike for Pr > 1.

2
Fig. 3. D/m versus T. for Pr 1, Le - 1, y - 5/3, B .09, 6 a 50.

Fig. 4. D/m2 versus t. for Pr - 1, Le = 1, y - 5/3, o - .5, e 50.

Fig. 5. M2 versus D/m2  for fast and very slow deflagrations, Pr - 1,
Le = 1, y - 5/3, 3 - .5, e a 50. !)lr&W,% f'or" M&CII RUV44PS &.f ti,.
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